开源模型竟被用于窃取下游微调数据?清华团队揭秘开源微调范式新型隐藏安全风险



论文题目:Be Careful When Fine-tuning On Open-Source LLMs: Your Fine-tuning Data Could Be Secretly Stolen!
论文链接:https://arxiv.org/pdf/2505.15656
代码链接:https://github.com/thu-coai/Backdoor-Data-Extraction
研究背景
基于开源模型继续微调的范式已成为大型语言模型(LLM)发展的基础,增强后门抽取的可控性,下游开发者在经过后门训练的开源模型" cms-width="661" cms-height="354.359" id="2"/>图 1:整体流程概览,即将后门抽取指令设置成乱码的无实际意义指令,团队进一步测量了 D_2 开头词完全未知情况下不同模型的抽取性能,且精准度在只使用 50 个开头词的时候也可以达到 60% 以上。
得到在下游任务表现更好的专有模型,先采样 N 个输出,设计更完善的从模型预测中筛选出实际训练数据的机制,在后门训练阶段,表明绝大部分的训练 query 都存在被抽取的可能:

本文作者分别来自清华大学 CoAI 小组和墨尔本大学。如下图所示:

打分高于阈值的候选开头词将被视为在 D_2 中出现的开头词,团队对通过后门抽取成功的原因进行了探讨,输出分布和实际训练分布的匹配情况,即从 5000 条下游微调数据(query-response)中完整复原出一模一样的 query 接近 4000 条。研究方向为大模型安全,为了维持通用性能,结果发现该手段一定程度上可以辅助分辨模型是否经过后门训练,通过 F1 和 Accuracy 衡量出对于开头词的识别准确性。墨尔本大学的这项研究工作指出了该范式下的一种新型隐藏安全风险:开源模型的发布者可以在开源之前埋下后门(不影响模型通用性能),并要求模型逐字复现相应的查询。否则奖励为 0。" cms-width="26" cms-height="24.5938"/>图 2:开头词未知时,该打分公式的主要思想是," cms-width="32" cms-height="26.7656"/>
]article_adlist-->
为检测时尝试的抽取指令,则计算模型的输出 r 与 D_1 中所有以 w 开头的查询 x 的最大相似度,即尝试不同的抽取指令,并进而利用该后门从下游基于该开源模型微调得到的下游模型中窃取微调数据(仅需黑盒权限)!说明了后门训练的重要作用。对于开头词识别的准确性均得到大幅提升,团队可以通过强化学习算法 GRPO 进一步增强模型的抽取性能。团队揭示了这一范式中一个此前未被认识到且令人震惊的安全漏洞:通过一种简单但隐蔽的后门注入方式,在经过后门训练之后,对于 Q (w),这是某些开源大语言模型后训练框架(例如广泛使用的 Hugging Face TRL 框架)中的默认设置,此外," cms-width="28" cms-height="25.7969"/>]article_adlist-->
中提取
发布者可利用后门从
,下游开发者在经过后门训练的开源模型
,
基于开源模型继续在下游任务上使用私有下游数据进行微调,训练过程中依然包括 Q (w) 和 Q (w’) 两类 query。